If playback doesn't begin shortly, try restarting your device.
•
You're signed out
Videos you watch may be added to the TV's watch history and influence TV recommendations. To avoid this, cancel and sign in to YouTube on your computer.
CancelConfirm
Share
An error occurred while retrieving sharing information. Please try again later.
MIT Introduction to Deep Learning 6.S191: Lecture 1
Foundations of Deep Learning
Lecturer: Alexander Amini
2023 Edition
For all lectures, slides, and lab materials: http://introtodeeplearning.com/
Lecture Outline
0:00 - Introduction
8:14 - Course information
11:33 - Why deep learning?
14:48 - The perceptron
20:06 - Perceptron example
23:14 - From perceptrons to neural networks
29:34 - Applying neural networks
32:29 - Loss functions
35:12 - Training and gradient descent
40:25 - Backpropagation
44:05 - Setting the learning rate
48:09 - Batched gradient descent
51:25 - Regularization: dropout and early stopping
57:16 - Summary
Subscribe to stay up to date with new deep learning lectures at MIT, or follow us on @MITDeepLearning on Twitter and Instagram to stay fully-connected!!…...more
MIT Introduction to Deep Learning 6.S191: Lecture 1
Foundations of Deep Learning
Lecturer: Alexander Amini
2023 Edition
For all lectures, slides, and lab materials: http://introtodeeplearning.com/
Lecture Outline
0:00 - Introduction
8:14 - Course information
11:33 - Why deep learning?
14:48 - The perceptron
20:06 - Perceptron example
23:14 - From perceptrons to neural networks
29:34 - Applying neural networks
32:29 - Loss functions
35:12 - Training and gradient descent
40:25 - Backpropagation
44:05 - Setting the learning rate
48:09 - Batched gradient descent
51:25 - Regularization: dropout and early stopping
57:16 - Summary
Subscribe to stay up to date with new deep learning lectures at MIT, or follow us on @MITDeepLearning on Twitter and Instagram to stay fully-connected!!…...more