If playback doesn't begin shortly, try restarting your device.
•
You're signed out
Videos you watch may be added to the TV's watch history and influence TV recommendations. To avoid this, cancel and sign in to YouTube on your computer.
CancelConfirm
Share
An error occurred while retrieving sharing information. Please try again later.
MIT Introduction to Deep Learning 6.S191: Lecture 4
Deep Generative Modeling
Lecturer: Ava Amini
2023 Edition
For all lectures, slides, and lab materials: http://introtodeeplearning.com
Lecture Outline
0:00 - Introduction
5:48 - Why care about generative models?
7:33 - Latent variable models
9:30 - Autoencoders
15:03 - Variational autoencoders
21:45 - Priors on the latent distribution
28:16 - Reparameterization trick
31:05 - Latent perturbation and disentanglement
36:37 - Debiasing with VAEs
38:55 - Generative adversarial networks
41:25 - Intuitions behind GANs
44:25 - Training GANs
50:07 - GANs: Recent advances
50:55 - Conditioning GANs on a specific label
53:02 - CycleGAN of unpaired translation
56:39 - Summary of VAEs and GANs
57:17 - Diffusion Model sneak peak
Subscribe to stay up to date with new deep learning lectures at MIT, or follow us @MITDeepLearning on Twitter and Instagram to stay fully-connected!!…...more
MIT Introduction to Deep Learning 6.S191: Lecture 4
Deep Generative Modeling
Lecturer: Ava Amini
2023 Edition
For all lectures, slides, and lab materials: http://introtodeeplearning.com
Lecture Outline
0:00 - Introduction
5:48 - Why care about generative models?
7:33 - Latent variable models
9:30 - Autoencoders
15:03 - Variational autoencoders
21:45 - Priors on the latent distribution
28:16 - Reparameterization trick
31:05 - Latent perturbation and disentanglement
36:37 - Debiasing with VAEs
38:55 - Generative adversarial networks
41:25 - Intuitions behind GANs
44:25 - Training GANs
50:07 - GANs: Recent advances
50:55 - Conditioning GANs on a specific label
53:02 - CycleGAN of unpaired translation
56:39 - Summary of VAEs and GANs
57:17 - Diffusion Model sneak peak
Subscribe to stay up to date with new deep learning lectures at MIT, or follow us @MITDeepLearning on Twitter and Instagram to stay fully-connected!!…...more